Sustainability Solutions

Waste to Resource Assessment[™] Report

Sheridan College Oakville, ON

October 7th, 2010 Prepared by Green SquadSM

This assessment is designed to exceed the minimum guidelines for performing waste assessments as set forth by the US EPA and Canadian provincial regulatory authorities. This report has been prepared for the specific purpose(s) contained herein. To the extent that statements and information provided by the client, its representatives, or partners have been used in the preparation of this report, Green Squad and Waste Management of Canada Corporation relied upon the same to be accurate, and for which no assurances are intended and no representations or warranties are made. Green Squad and Waste Management of Canada Corporation make no certification and gives no assurances except as explicitly set forth in this report. This report and the information contained herein, is produced for the expressed use of Sheridan College, Oakville, ON. Green Squad and Waste Management of Canada Corporation specifically prohibit redistribution of this report and the material contained herein in whole or part without expressed written permission of Green Squad and Waste Management of Canada Corporation.

Table of Contents

Executive Summary	4
Overview	.4
Assessment Information	.5
Summary of Findings	.6
Options Overview	.6
Assessment Findings and Goal Alignment	7
Goals, Objectives, and Other Factors	.7
Sampling Method	.7
Material Composition Breakdown	8
Waste Material Comparison by Category	.8
Waste Material Composition by Sample Collection Area	.9
Recycling Material Comparison by Category1	11
Recyclable Material in Waste Stream by Sample Collection Area1	12
Diversion Recommendations 1	.3
Overview	13
Increase Awareness of Current Recycling Programs	13
Investigate Implementing an Organics Recycling Program	22
Assess Waste and Recycling Bin Setup	23
Education & Promotion of Campus Recycling Program	24
Develop 'Green' Purchasing Policies	25
Supplementary Information 2	26
Appendix 12	26
Appendix 2	27
Appendix 3	29

Executive Summary

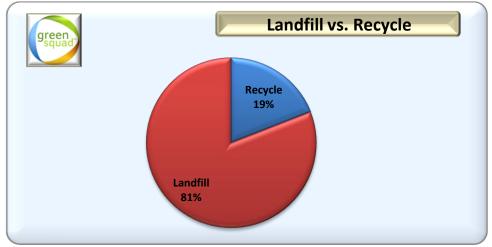
This section provides a summary of findings for Sheridan College.

- > Overview
- > Assessment Overview
- > Summary of Findings
- > Options Overview

Executive Summary

Overview

On September 14, 2010, Green Squad conducted a Waste to Resource[™] assessment for the Sheridan College (Sheridan) located at 1430 Trafalgar Road in Oakville, ON. A few goals of the assessment were as follows.


- Develop baseline inventories for waste generation at Sheridan College
- To identify and quantify waste composition and commodity
- To determine the recovery performance of existing programs
- Identify opportunities to increase recycling and reduce cost
- Develop recycling strategies that could be implemented throughout the facility

During the waste assessment conducted by Green Squad, visual inspections of waste generation points throughout the facility resulted in the discovery of additional recycling opportunities. The assessment identified six primary opportunities that should occur in order to improve your overall waste diversion rate. The following are our recommendations:

- Increase Awareness of Current Recycling Programs
- Investigate Implementing an Organics Recycling Program
- ssess Waste and Recycling Bin Setup 🗳
- Education and Promotion of Campus Recycling Program
- Develop 'Green' Purchasing Policies

Our goal is to provide Sheridan with strategies that will maximize the efficiency of your waste management system. The facility generated 486 tonnes of waste and recyclables last year. The current diversion rate in your facility is 19%.

Figure 1 – Current Diversion Rate at Sheridan

Assessment Information

Table 1 – Facility Information

Item	Comments
Facility Name	Sheridan College
Description	College (Institute of Technology and Advanced Learning)
Address	1430 Trafalgar Rd, Oakville , ON
Contact Name	Gord Ide
Contact Number	905-845-9430 (x2251)

Table 2 – Assessment Summary

ltem	Comments	
Performed By:	Matt Adams	
Performed On:	October 8, 2010	
Report Written :	Matt Adams	
Assessment Type	Waste to Resource Assessment	
	Basic Material Characterization Detailed Material Characterization	
Basic Options Analysis		Detailed Option Analysis
Assessment Level	Carbon Analysis	□ Material process mapping
	☑ Implementation Feasibility Analysis	☑ Action Plan

Figure 2 – Waste Collected for Assessment Period

Summary of Findings

A team of Green Squad Eco-Consultants[™] performed an assessment that involved a walk through and targeted sort and weigh analysis throughout the building. The following is a summary of key findings identified during the assessment:

- Annually, it is estimated that 393 tonnes of waste and 93 tonnes of recyclables will be generated from your facility.
- Of the waste sent to landfill, 54% could have been diverted through available recycling programs.
- Paper materials account for 49% of the total waste sent to landfill.
- Plastic materials accounts for 21% of the total waste sent to landfill.
- Grganic waste account for 19% of the total waste sent to landfill.

Options Overview

A total of 5 options were identified during the assessment. The table below lists key options that represent the most significant opportunities.

Table 3 – Options Summary Table

Option	Description	Benefit	Rationale
Increase awareness of current recycling programs	Promote, re-educate and expand recycling program within the facility	 ✓ Increase recycling and diversion rate, ✓ Increased efficiencies ✓ Reduced cost 	Recycling programs currently in place are not being fully optimized and review of bin placement and collection procedures should be reviewed.
Implement Organics Recycling Program	Investigate opportunities to divert organic material from waste stream	 ✓ Increased diversion rate ✓ Increased efficiencies ✓ Reduced cost for disposal 	Organic waste represents a significant amount of your disposed waste. By implementing a composting program, this material can be diverted and reduce your costs for disposal.
Assessment of Waste and Recycling Bin Setups	The success of a recycling program is dependent on properly placed bins.	 ✓ Increased recycling ✓ Increased awareness of recycling programs 	Having collection bins properly placed throughout the facility will increase the opportunity that students and staff have to recycle.
Education and Promotion of Campus Recycling Programs	Promote, re-educate and expand recycling program within the facility	 ✓ Increase recycling and diversion rate, ✓ Increased efficiencies ✓ Reduced cost 	All students and staff need to be encouraged and motivated regarding waste and recycling procedures within the facility.

Waste to Resource Assessment ™ Report

Develop 'Green'	Develop a policy	\checkmark	Minimizes waste	By purchasing products that can be
Purchasing	that favours		disposed	reused or recycled, and are
Policy	environmentally	\checkmark	Reduced cost	packaged in minimal materials,
	sound products	\checkmark	Increase recycling	less waste will be generated by
			and diversion	Sheridan.
			rates	

Assessment Findings

and Goal Alignment This section provides information on the alignment of Sheridan College and the assessment findings.

- > Goals, Objectives, and Other Factors
- > Sampling Method

Assessment Findings and Goal Alignment

Goals, Objectives, and Other Factors

The following is a list of company goals, objectives, or other factors considered during this assessment.

- Apply findings from the waste audit to reduce waste, maximize collection of recycling materials and optimize waste management efficiencies
- Streamline and standardize handling routines of materials throughout the facility
- Monitor waste generation and recovery levels on a regular basis
- Reduce waste spend and increase diversion rate of materials
- Provide ongoing training and education
- Identify areas of new or enhanced recycling

Sampling Method

In order to characterize the material stream, visual observations and samples were obtained from various collection areas. These collection areas were identified from labels placed on the waste bags. For the purposes of this assessment, a sample Collection Area is a combination of a Waste Generating Area and/or Waste Generating Process. The assessment material was collected in a designated location separate from other waste collection areas.

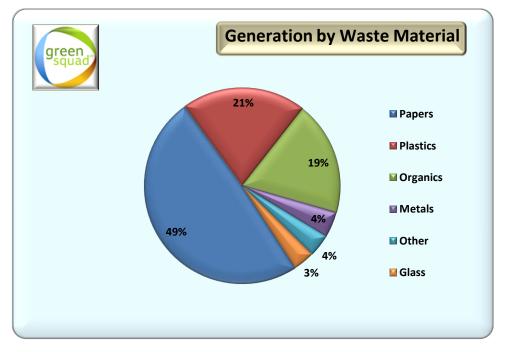
During this assessment, samples were collected from 14 source areas throughout the campus over a 24 hour period each day for the three day assessment. The materials were divided into categories and weights of each material were recorded.

Material Composition Breakdown

This section provides a breakdown of the sample material composition.

- > Waste Material
 Comparison by
 Category
- > Waste Material
 Composition by
 Sample Collection
 Area
- Recycling Material Comparison by Category

Material Composition Breakdown


Waste Material Comparison by Category

This section displays a breakdown of material categories by volume.

Table 4 – Waste Material Comparison by Category

Waste Category	Total Audited Waste (kg)	Annual Projected Volume (kg)
Papers	402.3	193,413
Plastics	167.8	80,690
Organics	154.2	74,139
Metals	34.6	16,612
Other	30.4	14,630
Glass	28.4	13,670
Total	817.8	393,153

Figure 3 – Waste Material by Category

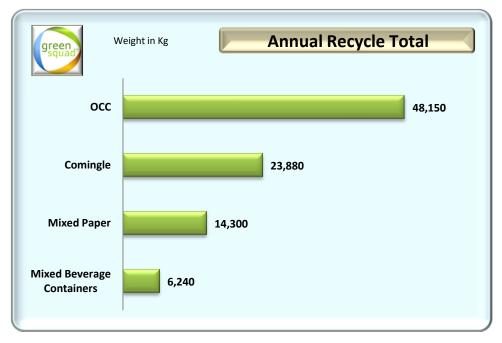
Waste Material Composition by Sample Collection Area

The following table displays a breakdown of the waste sources during the Green Squad assessment. For further in-depth analysis of Audited Waste Sources, consult Appendices and Supplementary Data.

Table 4 – Audited Waste Sources

Collection Area	Total Audited Waste (kg)	Annual Projected Volume (kg)
C Wing	172.9	83,120
B Wing	144.9	69,660
A Wing	109.6	52,689
J Wing	90.3	43,411
G Wing	55.5	26,681
E Wing	55.0	26,442
SCAET	54.6	26,249
AA Wing	34.0	16,345
AS Wing	32.8	15,768
Daycare	21.8	10,480
Athletics	20.0	9,615
K Wing	10.6	5,096
D Wing	10.6	5,096
H Wing	5.2	2,500
Total	817.8	393,153

Figure 5 – Auditing Setup


Recycling Material Comparison by Category

This following table displays a breakdown of Audited Recycling Material Composition.

Table 5 – Recycling Material Comparison

Recycled Materials	% of Material Recycled	Annual Projected Volume (kg)
осс	52.0%	48,150
Comingle	25.8%	23,880
Mixed Paper	15.5%	14,300
Mixed Beverage Containers	6.7%	6,240
Total	100.0%	92,570

Figure 6 – Recycled Materials

Recyclable Material in Waste Stream by Sample Collection Area

The following figure displays the amount of recyclable material in the disposed waste. For further in-depth analysis of Audited Waste Sources, consult Appendices and Supplementary Data.

Figure 7 below, shows the percentage of recyclable material found in the waste stream for each sample collection area. This calculation is a strong indicator of how successful a recycling program is working. High percentages can indicate several issues such as; staff and students having problems identifying recyclable materials, graphics and signage not being effective, recycling bins not being paired with garbage bins or recycling bins not being located in convenient locations. Recommendations on how to improve Sheridan's diversion rate can be found in the next section of the report.

Figure 7 – Percentage of Recyclable Material in Waste Stream

Diversion Recommendations

This section provides a detailed explanation of the options available to Sheridan College.

- > Overview
- Increase Awareness of Current Recycling Programs
- Investigate
 Implementing an
 Organics Recycling
 Program
- > Assess Waste and Recycling Bin Setup
- Education and
 Promotion of Campus
 Recycling Program
- > Develop 'Green' Purchasing Policies

Diversion Recommendations

Overview

Several options have been identified that can help Sheridan make its operations more sustainable. Each option should be carefully reviewed for operational, financial, social, and strategic fit.

- Increase Awareness of Current Recycling Programs
- Investigate Implementing an Organics Recycling Program
- Assess Waste and Recycling Bin Setup
- Education and Promotion of Campus Recycling Programs
- Develop 'Green' Purchasing Policies

WM. Increase Awareness of Current Recycling Programs

Recycling opportunities represent the largest potential cost savings and landfill diversion opportunity for Sheridan . While recycling programs are currently in operation, the audit shows that they are not working at their optimal efficiency. 54% of the material sent to landfill is recyclable. This represents a huge opportunity to increase your waste diversion and reduce associated waste removal costs.

Paper Recycling

Annually, 193 tonnes of paper products will be sent to landfill, accounting for 49% of the total disposed waste. Of the paper sent to landfill, the largest contributors to the waste stream were White Ledger Paper, Paper Towels, Paper Cups and Boxboard.

White Ledger Paper accounts for just over 38 tonnes, representing 10% of the total annual waste disposed at Sheridan. This material is currently accepted in the College's recycling program. Although fine paper was found in the disposed waste in each collection area, significant amounts were found in the J, C, and B Wings. It is recommended that these areas be immediately targeted for more recycling bins. Additionally, stand alone garbage containers should be removed or paired up with a recycling bin to increase the capture rate.

White Ledger Paper

Paper Towel waste accounts for 30 tonnes of the total waste sent to landfill by Sheridan. There are two options to divert this material from the landfill. The first option is to reduce the amount of paper towels by switching to hand dryers. In addition to the reduction in material sent to landfill, this option also produces cost savings as you are no longer paying for the purchase of paper towel or for disposal. While the initial cost of hand dryer installation may be high, the cost savings over time are substantial. Furthermore, new dryers available use minimal energy and contribute to overall sustainability.

The second option is to begin collecting Paper Towel waste from washrooms throughout the College and include this material in an organics recycling program. Paper towel is compostable and works very well in an organics program to absorb liquid organic waste and controlling leakage and smell. This option will be discussed more in depth later in the report.

Paper Towels Found in Disposed Waste

Waste to Resource Assessment ™ Report

Paper Cups also contributed a large amount to the disposed waste stream, accounting for 25,563 kg per year. Paper Cups are acceptable in Sheridan's paper recycling as long as the lids are removed. Since there are coffee shops and a cafeteria on Campus, signage indicating the recyclability of Paper Cups in the paper recycling stream will be necessary to improve the capture rate of this material.

Paper Cups

Boxboard and OCC account for 18,649 kg and 17,842 kg of waste sent to landfill each year. Both of these materials have recycling programs available at Sheridan. Significant amounts of Boxboard were generated in the A and B Wing, the majority of it being food waste packaging. Large amounts of OCC were also found in the B Wing with food and supplies packaging representing the bulk of the material. Educating staff and proper signage with bold lettering and graphics above all recycling containers will help increase diversion rates for these materials.

Cardboard Found in Disposed Waste

Newsprint

Plastics Recycling

Plastic materials account for 21% of your waste stream composition; 81 tonnes of plastic materials will be sent to landfill this year from your facility. Plastic is generally not a heavy material therefore the high weight generated indicates a huge volume of material. Utilizing current recycling programs will ensure this material is diverted. All plastic material will be marked with a number indicating the type of plastic that was used to make the item. This number can be used to determine if recycling programs exist for that item. Most commonly, recycling programs will exist for #1, #2, #4, & #5. Limited recycling programs exist for #3 and #6 plastics

Of the plastic sent to landfill, the largest contributors to the disposed waste stream is #1 PETE, accounting for 18,870 kg per year. This material is currently accepted in the recycling program at Sheridan. #1 PETE is used mainly as a beverage container, particularly for water bottles and pop/juice. These materials are easily identifiable as recyclable but are still being found in the garbage. The Athletics Center was found to have the highest percentage with 16% of its disposed waste being #1 PETE. Placing additional bins with proper signage throughout the Athletic facility and campus wide is recommended to raise awareness and encourage students and staff to make the right decisions when approaching a garbage bin or recycling bin.

#1 PETE Beverage Bottles

#6 PS -Other and #6-PS Styrofoam account for 11,216 kg per year and 8,576 kg per year, respectively. Unfortunately #6 plastic is not recyclable. The #6-Other material is primarily food packaging, such as take out containers and coffee lids. An opportunity to reduce the amount of waste packaging is possible through an environmental purchasing policy. This will be discussed in more detail in the following section.

#6 PS-Styrofoam in Waste Stream

Another significant contributor to the waste stream is Polycoats, at 10,340 kg per year. Polycoats, also known as milk cartons, are currently acceptable in the recycling program at Sheridan and staff and students should be informed of this. It is recommended that additional recycling receptacles be set up in the Athletics Center and the H Wing where a high percentage of Polycoats were found in the disposed waste .

#2 HDPE Bottles in Waste Stream

Figure 9 - Annual Plastic Waste – Landfill

Metal Recycling

It was determined 17 tonnes of metal will be sent to landfill annually by Sheridan College. The largest contributor of the metal sub-categories is Aluminum Food and Beverage Cans at 13,421 kg per year. Although Aluminum Beverage Cans were found throughout the campus waste, the highest percentage of Aluminum Cans was found in the Athletics Center and C Wing garbage. To reduce the amount of aluminum ending up in the waste stream, examine the current container setup throughout the College to ensure that all garbage receptacles are paired with a recycling bin.

Aluminum Beverage Cans in Waste Stream

Glass Recycling

Just over 13 tonnes of Glass bottles will be sent to landfill annually. Currently this material is accepted in the recycling program at Sheridan . As this material is easily recognizable as recyclable, examine the current bin setup throughout the campus to ensure all garbage receptacles are twinned with recycling bins.

"Other" Material

It was determined that 15 tonnes of additional waste materials will be sent to landfill each year. While there are limited recycling options available for these materials, reduction is also a viable method to increase your diversion rate.

Curtain Samples, Floor Sweepings and Diapers accounted for the highest waste materials in this category at 6,444 kg per year, 3,385 kg per year and 3,077 kg per year, respectively.

Curtain Samples

Vinyl Storefront Sign

WM. Investigate Implementing an Organics Recycling Program

Sheridan generates a significantly high volume of organic waste annually. Based on the audit results, it was determined that 74 tonnes of organic material will be sent to landfill. Organic material can be recycled in the Oakville area and implementing a recycling program could result in a significant improvement to your overall diversion rate. Along with food waste, paper towels can be disposed of through the organics program adding an additional 30 tonnes of material that can be captured by this program. If an organics program were successfully implemented that captured food waste and paper towels, the diversion rate at Sheridan College could increase from 19% to 40%.

On the Sheridan Campus there are coffee shops, fast food eateries, and a cafeteria which are all generators of food waste. Keep in mind that if an organics program is rolled out at Sheridan there is an opportunity to increase the diversion even more. As shown in Figure 7, a large amount of plastic cutlery was found in the waste stream. It is recommended that should an organics program be implemented, Sheridan explore the option of purchasing compostable cutlery. Compostable cutlery is made completely out of plant based resins and is an obvious environmentally friendly alternative to the conventional disposable plastic cutlery being used.

WM. Assess Waste and Recycling Bin Setup

During the facility tour, it was observed that many garbage containers were placed alone. These free-standing waste containers should be paired up with a recycling container or be removed all together. Most people will recycle if the receptacles are conveniently available, however, participation will decrease significantly if they have to search out the proper disposal bin. With so many garbage cans readily available, most recyclables will end up in the garbage.

To be overcome this problem, you need to remove and re-organize these single waste containers into three stream recycling stations for paper, containers, and garbage. Students and staff will then have a choice to do the right thing with their waste materials.

With the amount of recyclables found in the garbage being very high at Sheridan, this should be a priority.

Below are some examples of inconsistent bin arrangement found at Sheridan.

'Orphaned' Garbage Bins

Example of Proper Waste Station Setup at Sheridan

WM Education & Promotion of Campus Recycling Program

The success of a recycling program is driven by user participation. If those who generated the waste are not utilizing diversion programs success will never be achieved, it is not enough to simply implement programs and expect those programs to be effective. There are two critical factors to necessary to ensure that diversion programs are effective. These factors are education and promotion.

You cannot expect your staff to use diversion programs if they do not know about them or do not understand their use, therefore, it is vital to educate everyone on the use and importance of waste diversion. There is an ever increasing pressure to become environmentally friendly. When diversion programs have been properly implemented, most will utilize the programs.

Another part of education is visibility. By ensuring recycling mediums are present and conveniently available throughout the facility, the recycling participation rate will improve. Ensuring that there are recycling bins in every area of the facility where waste is generated will allow for the proper source separation of materials.

Engagement is the next critical success factor. Motivated people are more likely to participate in diversion programs than those who are uninterested. Consider taking advantage of the talent in the College's art classes. Have the students create new signage for Sheridan's recycling program or as a project have them design and paint the receptacles on campus.

Also, investigate the option of forming an environmental committee for the college with representatives from building management, the faculty and the student body. Not only will this give students and staff ownership of diversion programs but it will open communication channels and allow the discussion of current challenges and future opportunities.

WM. Develop 'Green' Purchasing Policies

Purchasing departments are where the money is transferred from college to vendor and where contracts are developed. It is at this stage that leverage can be best applied to the vendors, making it an effective place to implement actions that reduce environmental impact. The development of a Green Purchasing Policy may be as simple as buying recycled paper or as complex as considering the environmental impact of a product at each stage of its life, from when it is manufactured to when it is disposed.

Annually, Sheridan College purchases hundreds of different products for dozens of different departments. By eliminating unnecessary packaging, purchasing decisions can have a major impact on your waste disposal costs. The purchasing policy should also address the roles and responsibilities of suppliers. For example, it may be appropriate to require that supply contracts include provisions for suppliers to take back excess packaging materials.

Supplementary Information

Appendix 1

WM. Detailed Waste Breakdown by Generation Area

Area	Paper (kg)	Metal (kg)	Plastic (kg)	Glass (kg)	Organic (kg)	Other (kg)	Total (kg)
C Wing	68.4	11.2	42.6	7.3	41.0	2.4	172.9
B Wing	79.1	4.6	29.5	3.0	23.2	5.5	144.9
A Wing	58.6	3.6	24.5	2.0	20.9	0.0	109.6
J Wing	68.1	2.4	9.3	1.5	9.0	0.0	90.3
G Wing	21.5	2.7	11.4	4.4	14.3	1.2	55.5
E Wing	27.2	1.6	10.9	2.7	12.3	0.3	55.0
SCAET	29.4	2.4	12.4	2.7	6.7	1.0	54.6
AA Wing	10.5	0.6	4.8	2.5	4.9	10.7	34.0
AS Wing	16.3	0.9	6.6	0.8	6.1	2.1	32.8
Daycare	7.6	0.4	1.0	0.0	6.5	6.4	21.8
Athletics	5.7	2.5	7.7	0.9	2.5	0.8	20.0
K Wing	2.7	1.5	2.3	0.0	4.2	0.0	10.6
D Wing	4.6	0.1	3.1	0.7	2.1	0.0	10.6
H Wing	2.8	0.2	1.8	0.0	0.5	0.0	5.2
Total	402.3	34.6	167.8	28.4	154.2	30.4	817.8

Appendix 2

WM. Six Steps to a Successful Sustainability Program

WM Green Squad has extensive experience in managing on-site sustainability programs safely and in a manner that provides a framework for achieving our customer's waste reduction, continuous improvement and recycling goals. The following are several steps that we have found useful in implementing sustainability programs:

- 1. *Make sure that you sustain your company's ability to compete.* Any improvement or innovation should have economic *and* environmental benefit.
- Make sure that your first recycling initiative provides a quick payback. It is important that the first initiative delivers a quick payback to get continued support from operational management.
- 3. *Explore the entire value chain.* For every dollar spent on disposal and transportation, another \$3.00 \$10.00 is spent in generating the material in the first place.
- 4. Use quantitative analysis to identify the best opportunities. Typically, Pareto charts work best, i.e., 20% of by-products account for 80% of the cost or 80% the cost savings.
- 5. *Work with your vendors, suppliers and employees.* Often times, the best ideas come from those working in a particular area every day. You should push vendors and suppliers to develop programs that positively impact your goals and ask your employees for input.
- 6. *Win people over with enthusiasm.* Enthusiasm and communication of goals and achievements are critical for sustaining a strong program.

WM. Source Reduction and Reuse Strategies

Studies indicate that between 2 and 5 percent of waste streams are reusable. There are many ways to prevent waste at the source and reuse products to reduce waste, including:

Implementing Purchasing Practices that Reduce Waste

- ✓ Purchase reusable rather than disposable products.
- ✓ Request that vendors deliver products in reusable containers, such as plastic totes, rather than cardboard boxes.
- ✓ Purchase in bulk to reduce packaging while purchasing only the amount that is needed.
- ✓ Purchase products with minimal packaging.
- ✓ Work with suppliers to minimize the packaging used to protect their products.

Reducing the Amount of Material Used

- ✓ Establish a facility-wide double-sided copying policy.
- ✓ Make scratch pads from used paper.
- ✓ Use outdated letterhead for in-house memos.
- ✓ Circulate, post on bulletin boards, or send electronically rather than making multiple copies.
- ✓ Use central files to reduce the number of hard copies that are made.

Using Reusable Rather than Single-Use, or Disposable, Products

- ✓ Change to reusable dishes in the cafeteria.
- ✓ Place reusable coffee mugs in break rooms.
- ✓ Offer a discount on drink prices for using reusable beverage containers.
- ✓ Use rechargeable batteries.
- ✓ Install hot air dryers in public restrooms and remove paper towels.

Reusing Materials for Other Purposes at Your Facility

- ✓ Reuse cardboard boxes and foam peanuts for shipping from your facility.
- ✓ Use newspaper and shredded paper for packaging.

WM. Green Squad Service Offerings

Green Squad offers the following services to make bring environmental sustainability into your business operations.

1	Waste Solutions Discover effective, affordable, and complete solutions for managing waste.	4	Energy Solutions Transform the way you view and manage your energy consumption.
	Construction and Demolition Materials Management Solutions Increase diversion and reduce costs on your next job	Ų	Event & Venue Solutions Make your events environmentally friendly.

Appendix 3

WM. Waste Assessment Categories	WM.	Waste	Assessment	Categories
---------------------------------	-----	-------	------------	------------

Paper	General Descriptions
White Ledger	White Paper, Printer Paper
OCC	Cardboard
Boxboard	Cereal Box Material
Newsprint	Newspapers
Polycoat	Milk Cartons, Tetra Packs
Paper Towels	Paper Hand Towels
Kraft Paper	Paper bags, Heavy Brown Paper
Tissue Paper	Thin Packing Paper
Magazines	Glossy Magazines and Newspapers
Photo Paper	Glossy Paper
Paper Plates	Plates
Wax Paper	Paper for Wrapping or Packaging
Napkins	Paper Napkins
Paper Cups	Paper or Polycoat Cups

Metal	General Descriptions
Aluminum F & B Cans	Aluminum Food and Beverage cans, Pop Cans
Aluminum Foil / Wrappers	Food Wrappers and Packaging
Aluminum	Aluminum Parts and Products
Steel	Steel Parts and Products
Steel Fixture Hangers	Hardware for store displays
Metal Clothes Hangers	Clothes Hangers

Waste to Resource Assessment ™ Report

Plastic	General Descriptions
#1 PETE	Polyethylene terephthalate, Water Bottles, Soft Drink Bottles
#2 HDPE	High density polyethylene containers, Chemical containers or jugs
#2 HDPE Bags	High density polyethylene bags or film, strong "crispy" bags
#4 LDPE	Low density polyethylene bags and film, garbage bags, shopping bags
#5 PP	Poly propylene, yogurt containers, straws
#6 PS	Poly styrene, Styrofoam, packaging materials, take- out food containers, packing popcorn
#7 Other	Products labeled #7 products
Stretch Wrap	Shipping stretch wrap, food grade stretch wrap
Plastic Strapping	Plastic Shipping Straps
Bubble Wrap	Shipping pads, bubble packaging
Polyfoam	Foam protective packaging materials
Shipping Bags	Strong or thin shipping bags, UPS bags
Polycarbons	Lens shavings
Plastic Signage Board	Advertising signs, variety of plastic coatings
Foam Signage Board	Advertising signs, variety of foam or plastic signs

Textiles	General Descriptions
Tack Cloth	Display Materials
Misc Textiles	Rags
Personal Clothing	Used shirts, Uniforms, Hats

Waste to Resource Assessment ™ Report

Wood	General Descriptions
Wood Shavings	Scrap Construction Shavings and Debris
Scrap Wood	Construction Materials

Glass	General Descriptions
Clear Glass	Clear Beverage Bottles and Jars

Organics	General Descriptions
Behind Counter Waste	Scrap Food Waste, Coffee Grounds
Animal Waste	Animal Droppings and Matter
Post Consumer Waste	Post Consumer Scrap Food Waste

Others	General Descriptions
Latex Gloves	Thin or thick medical use gloves
Electronics	Electronic products, toasters, TV's, cell phones
Plastic Hangers	Clothing or Display hangers
Construction Waste	Drywall, Sheet rock
Shingles	Construction materials, Roofing shingles
Hair	Hair clippings
Diapers	New or used diapers
Work Boots	Used personal clothing
Plant Waste	Leaves
Floor Sweepings	Debris

